
ASP.NET MVC - SampleApplication
based on Entity Framework 4.0

The intention of the MVCSampleApplication was to build a sample application using the latest .NET

technologies.

The ASP.NET MVC application provides a simple guestbook, where users can register and post

comments. Administrators may additionally edit and delete comments. Moreover a WPF based client

is included, using the same services as the web application.

This article describes the key implementation aspects and overall architecture of the application. It

does not contain a step-by-step tutorial explaining every detail, as you find many blog posts

discussing all the technologies being used by this project on the internet1. The goal here was to put

all these technologies together in one application.

The following technologies are used:

 UI

 ASP.NET MVC with ELMAH and MVCSiteMap

 WPF Client with WPFLocalizeExtension

 WCF service (both clients use this)

 Server

 Entity Framework 4.0 with Self Tracking Entities

The following features and techniques are used:

 Fully localized application

 Dependency Injection using Unity

 Repository Pattern

 Unit of Work Pattern

1
 You will find some links at the end of this article.

http://aspnet.codeplex.com/
http://code.google.com/p/elmah
http://mvcsitemap.codeplex.com/
http://wpflocalizeextension.codeplex.com/
http://unity.codeplex.com/

Architecture

Client

Server

UI.AspMvc UI.WPF

Service.Proxy

Service.WcfFacade

Core.Database

Core.Domain.Repository Core.Domain.Entities

W
C

F

The Server
The server consists of four subprojects. The Service.WcfFacade contains the service interface

published as WCF service. The implementation of the service interface relies on

Core.Domain.Repository.

Core.Domain.Repository only contains some helper classes and interfaces which a concrete

repository must implement. Different implementations of this interface are imaginable, using

nHibernate or Linq2SQL for example. In Core.Database the repository is implemented on basis of the

new Entity Framework 4.0 together with a SQL-Express database.

In the past the Entity Framework did not work seamlessly with WCF services. Reattaching updated

objects to the context always required a workaround. One possibility was to send both, the original

object and the modified copy and then redo the changes on the server. Another workaround was to

manually set all properties as modified.

With the new Entity Framework you’ll get more options. You are now able to use custom T4

templates to generate your entity classes or you could write your entities manually.

With the Microsoft ADO.NET Entity Framework Feature CTP 1 you will get templates for:

 POCO (Plain Old CLR Objects) Entities

 Self-Tracking Entities (N-Tier support)

Since this project uses WCF, the template for Self-Tracking Entities is utilized2.

2
 http://blogs.msdn.com/adonet/archive/2009/06/22/feature-ctp-walkthrough-self-tracking-entities-for-entity-

framework.aspx

http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=7fd7164e-9e73-43f7-90ab-5b2bf2577ac9
http://blogs.msdn.com/adonet/archive/2009/06/22/feature-ctp-walkthrough-self-tracking-entities-for-entity-framework.aspx
http://blogs.msdn.com/adonet/archive/2009/06/22/feature-ctp-walkthrough-self-tracking-entities-for-entity-framework.aspx

The Clients
Both clients rely on Service.Proxy, which contains the service reference to the WCF service. The

advantage of placing the reference in a separate project is, that the proxy classes have only to be

generated once, when the service interface changes.

WCF Localization
Localizing an application is not very difficult. If you use *.resx-files for your strings, you have already

accomplished a lot of work. You only have to ensure that the thread accessing a resource has the

right culture applied.

If you have a client-server system, the server does not know about the language in the client, so you

must provide the language in every call, since multiple clients running in different languages may

access the server.

One option is to add an additional argument to every service method to pass the current client

language to the server. A better approach is to use a WCF behavior to pass the language

automatically.

You can use MessageInspectors to add/read the current language as string to/from every

message header. This can be done in the following way:

 Create a class that implements the interfaces IClientMessageInspector and

IDispatchMessageInspector. You only have to implement the following methods:

 object BeforeSendRequest(ref Message request, IClientChannel

channel)

This method adds the current language as string to the message header.

 object AfterReceiveRequest(ref Message request, IClientChannel

channel, InstanceContext instanceContext)

This method reads the current language from the message header on the server side.

 Create a class that implements the interface IEndpointBehavior and/or

IServiceBehavior. This class adds an instance of the MessageInspector to every

endpoint/service.

 Configure the behavior in your Web.config file. Therefore you have to create a class that

derives from BehaviorExtensionElement. This class simply works as a factory for the

behavior.

If you want to see the full implementation and configuration take a look at:

 src\Service.WcfFacade\I18n

 src\UI.AspMvc\Web.config

Dependency Injection
Unity is used as Dependency Injection container. You can either configure the container in code or

over the Web.config file. If you configure the container in code, you yet compiler checks and you

can easily correct errors, but you need references to every assembly you use.

Since I wanted to avoid unnecessary project references, I chose to use the Web.config for

configuration. The project Common contains a helper class which reads the configuration and

resolves instances of your interfaces.

http://www.codeplex.com/unity

The Web Frontend (ASP.NET MVC)
As primary frontend an ASP.NET MVC application is used. This application also hosts the WCF service

which is required by both, the web and the WPF client.

If you want to learn ASP.NET MVC I recommend the book ASP .NET MVC 1.03 to you.

The MVCSampleApplication is not very extensive and quite easy to understand. It consists of 4

controllers and some views.

Localization
All controllers derive from LocalizedControllerBase which manages the different languages of

the page. The default language is English, as a second language German is available. If a user visits

the website for the first time, the preferred language is read from the HttpContext, if the language

is available, it is stored in the session. The visitor may also change the language manually, simply by

clicking on the corresponding flag, which triggers a GET request with a certain query string:

The LocalizedControllerBase will recognize the language in the query string and apply it. In

order to get this working on all pages, all controllers must derive from the mentioned class.

On any further request the language from the session will be used, unless it is changed manually

again.

The views and controllers retrieve their resources from *.resx-files. Since controllers are not

associated with a special view, they could only use global resources. Some extension methods enable

you to easily access the resources within views and controllers4. In Global.asax an extended

ViewEngine is registered to enable localization.

Error Logging
To log unhandled exceptions I use ELMAH. The wiki on the project’s website explains everything you

need to know for configuration. One problem is that ELMAH only logs unhandled exception. When

you use the HandleErrorAttribute on your controllers, no errors will get logged. There are

several solutions to this problem; one is to override the HandleErrorAttribute5.

MVC T4 Template
Normally you have to use strings to address your controller actions, e.g.

<%= Html.ActionLink("Back to index", "Index")%> (In a view)

return RedirectToAction("Index"); (In a controller)

3
 The first chapter can be downloaded here:

http://www.hanselman.com/blog/FreeASPNETMVCEBookNerdDinnercomWalkthrough.aspx
4
 http://blog.eworldui.net/post/2008/10/ASPNET-MVC-Simplified-Localization-via-ViewEngines.aspx

5
http://stackoverflow.com/questions/766610/how-to-get-elmah-to-work-with-asp-net-mvc-handleerror-

attribute/779961

http://www.amazon.com/Professional-ASP-NET-MVC-Wrox-Programmer/dp/0470384611/
http://code.google.com/p/elmah
http://www.hanselman.com/blog/FreeASPNETMVCEBookNerdDinnercomWalkthrough.aspx
http://blog.eworldui.net/post/2008/10/ASPNET-MVC-Simplified-Localization-via-ViewEngines.aspx
http://stackoverflow.com/questions/766610/how-to-get-elmah-to-work-with-asp-net-mvc-handleerror-attribute/779961
http://stackoverflow.com/questions/766610/how-to-get-elmah-to-work-with-asp-net-mvc-handleerror-attribute/779961

You will not get a complier error if you rename a controller action. If you use the MVC T4 template

written by David Ebbo you will.

The template analyzes your controllers and generates some code for you. You can rewrite the above

examples the following way:

<%= Html.ActionLink("Back to index", MVC.Home.Index())%> (In a view)

return RedirectToAction(MVC.Home.Index()); (In a controller)

SiteMap
Since the classic SiteMap from ASP.NET does not work in a MVC context, you can use the

MVCSiteMap provider.

http://blogs.msdn.com/davidebb/archive/2009/06/17/a-new-and-improved-asp-net-mvc-t4-template.aspx
http://mvcsitemap.codeplex.com/

TODOs
There are still some tasks to do, before you should use this application in a production environment:

 Unit Tests have to be written

 Write (more) logging output using log4net

 User passwords must be encrypted

 WCF service must be secured

Technologies / Libraries
Visual Studio 2010

ASP.NET MVC 2.0

Microsoft ADO.NET Entity Framework Feature CTP 1

StyleCop

http://code.google.com/p/elmah

http://unity.codeplex.com

 http://mvcsitemap.codeplex.com

http://wpflocalizeextension.codeplex.com

http://logging.apache.org/log4net/index.html

Resources
http://blogs.msdn.com/adonet/archive/2009/05/21/poco-in-the-entity-framework-part-1-the-

experience.aspx

http://blogs.msdn.com/adonet/archive/2009/05/28/poco-in-the-entity-framework-part-2-complex-

types-deferred-loading-and-explicit-loading.aspx

http://blogs.msdn.com/adonet/archive/2009/06/22/feature-ctp-walkthrough-poco-templates-for-

entity-framework.aspx

http://blogs.msdn.com/adonet/archive/2009/06/22/feature-ctp-walkthrough-self-tracking-entities-

for-entity-framework.aspx

http://blog.keithpatton.com/2009/05/30/Entity+Framework+POCO+Repository+Using+Visual+Studio

+2010+Net+40+Beta+1.aspx

http://devtalk.dk/2009/06/09/Entity+Framework+40+Beta+1+POCO+ObjectSet+Repository+And+Uni

tOfWork.aspx

http://www.hanselman.com/blog/FreeASPNETMVCEBookNerdDinnercomWalkthrough.aspx

http://blog.eworldui.net/post/2008/10/ASPNET-MVC-Simplified-Localization-via-ViewEngines.aspx

http://blogs.msdn.com/davidebb/archive/2009/06/17/a-new-and-improved-asp-net-mvc-t4-

template.aspx

http://stackoverflow.com/questions/766610/how-to-get-elmah-to-work-with-asp-net-mvc-

handleerror-attribute/779961

http://msdn.microsoft.com/en-us/vstudio/2010.aspx
http://aspnet.codeplex.com/
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=7fd7164e-9e73-43f7-90ab-5b2bf2577ac9
http://stylecop.codeplex.com/
http://code.google.com/p/elmah
http://unity.codeplex.com/
http://mvcsitemap.codeplex.com/
http://wpflocalizeextension.codeplex.com/
http://logging.apache.org/log4net/index.html
http://blogs.msdn.com/adonet/archive/2009/05/21/poco-in-the-entity-framework-part-1-the-experience.aspx
http://blogs.msdn.com/adonet/archive/2009/05/21/poco-in-the-entity-framework-part-1-the-experience.aspx
http://blogs.msdn.com/adonet/archive/2009/05/28/poco-in-the-entity-framework-part-2-complex-types-deferred-loading-and-explicit-loading.aspx
http://blogs.msdn.com/adonet/archive/2009/05/28/poco-in-the-entity-framework-part-2-complex-types-deferred-loading-and-explicit-loading.aspx
http://blogs.msdn.com/adonet/archive/2009/06/22/feature-ctp-walkthrough-poco-templates-for-entity-framework.aspx
http://blogs.msdn.com/adonet/archive/2009/06/22/feature-ctp-walkthrough-poco-templates-for-entity-framework.aspx
http://blogs.msdn.com/adonet/archive/2009/06/22/feature-ctp-walkthrough-self-tracking-entities-for-entity-framework.aspx
http://blogs.msdn.com/adonet/archive/2009/06/22/feature-ctp-walkthrough-self-tracking-entities-for-entity-framework.aspx
http://blog.keithpatton.com/2009/05/30/Entity+Framework+POCO+Repository+Using+Visual+Studio+2010+Net+40+Beta+1.aspx
http://blog.keithpatton.com/2009/05/30/Entity+Framework+POCO+Repository+Using+Visual+Studio+2010+Net+40+Beta+1.aspx
http://devtalk.dk/2009/06/09/Entity+Framework+40+Beta+1+POCO+ObjectSet+Repository+And+UnitOfWork.aspx
http://devtalk.dk/2009/06/09/Entity+Framework+40+Beta+1+POCO+ObjectSet+Repository+And+UnitOfWork.aspx
http://www.hanselman.com/blog/FreeASPNETMVCEBookNerdDinnercomWalkthrough.aspx
http://blog.eworldui.net/post/2008/10/ASPNET-MVC-Simplified-Localization-via-ViewEngines.aspx
http://blogs.msdn.com/davidebb/archive/2009/06/17/a-new-and-improved-asp-net-mvc-t4-template.aspx
http://blogs.msdn.com/davidebb/archive/2009/06/17/a-new-and-improved-asp-net-mvc-t4-template.aspx
http://stackoverflow.com/questions/766610/how-to-get-elmah-to-work-with-asp-net-mvc-handleerror-attribute/779961
http://stackoverflow.com/questions/766610/how-to-get-elmah-to-work-with-asp-net-mvc-handleerror-attribute/779961

